
UNCLASSI FIED

A tt 405, 877,

DEFENSE DOCUMENTATION CENTER
FOR

ýClENTIFIC AND TEC]HNICAL INFORMATION

"?AMI;;ON 5i,.71lON, ALEXANDRIA, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawing-, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



7.MEMORANDUM

• A Y: ..9 (3 3

DIFFERENTIAL APPROXIMATION
APPLIED TO THE SOLUTION OF

fCONVOLUTION EQUATIONS
Riohard Bellman, Robert Kalab¶I and Bulla Kotkin

DDC

if.

11tltEI'AIAED FOR:

NATIONAL INSTITUTES OF HEALTH

*74 P4f fl D~ ms
SANTA MONICA - CAMCIIINIA

. I,>



MEMORANDUM

MAY 1963'

DIFFERENTIAL APPROXIMATION
APPLIED TO THE SOLUTION OF

CONVOLUTION EQUATIONS
Riohard Bellman, Robert Kalaba and Bella Kotkin

This investigation was supported in part by Public Health Service Research Grant
Number RG-9608, from the Division of General Medical Sciences, National Institutes

1700 MAIN ST, SANTA MONICA W CAiIFORNIA -

iJ



PREFACE

This Memorandum deals with a new mathematical

approach. to the prob,).m of handling a certain type of

computationally complex equation that the authors have

encountered in their work on mathematical mode-s for

drug distribution in the body. Such studies have

important implications for cancer chemotherapy as well

as for other physiological processes.

I'
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SUMMARY

In their work on the construction of mathematical

models to aod in the study of physiological processes

connected with cancer chemotherapy, the authors nave

encountered convolution equations that may present

severe computational difficulties due to the storage

requirements for their solution, In this Memorandum,

the authors present a new approach to this problem,

using the technique of-differential approximation.
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"DIFFERENTIAL APPROXIMATION APPLIED TO THE SOLUTION
OF CONVOLU!ION EQUATIONS

.1. INTRODUCTION

In the course of constructing some mathematical

models -of physiological processes connected with cancer

chemotherapy Li', we have encountered functional

equations containing convolution terms. Equations of

this type are unpleasant computationally because of the

storage, and thus time, requirements for solution. In.

some cases, these storage requirements could exceed .

present capabilities and thus seriously oimede

numerical solution.

We wrish to present a new approach to this problem

using the technique of differential approximation. To

illustrate the method, we shall consider the e.uat ... .

(1.1) u(t) - f(t) f t u(s)ds.
0

2. POLYNOMIAL APPROXIMATION AND EXTENSIONS

A classical problem, which owes its inception to a

control process associated with the Watt steam engine

(see 12]), is that of obtaining a polynomial which

deviates the least from a given function, where the

deviation is measured by an assigned norm.

If we recognize that a polynomial p(t) = a0 + at

+ -.. + ant" is a solution of the linear differential

equation



(2.1 d(n+l)u ,

then we see immediately that this problem is a

particular case of the more general problem of finding

an equation

Sd,( n+l duU(2.2) d + al~t d + ... + an(t)u 0,dt ( dt J an+

whose solution approximates to the given function in an

ontimal fashion6 in the part-cula- c-ae where -the

al(V) are constants, this is equivalent to asking for

approximation by an exponential polynomial

(2.3) Pn(t)-- Z qk(t)e
k=0

This problem is in turn a special case of the

general problem of approximating to a given function

f(t) by means of the solution of a nonlinear

differential equation

! ad(n+l)-
(2.4) n u= g(u,u',...,.u(n).

dt~n+l)

This is a meaningful approximation problem for

arbitrary n, since an arbitrary analytic function will

not in general satisfy a nonlinear differential equation

of any finite order; e.g., r(t).

- -------. --- -~- - ,-----,---- --. ........ "?.. ..K .. .. ...
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-' ýThis problem arises in the study of design and

control and has an important role in the study of

adaptive processes (see 1351, [14). We Will discuss

these matters elsewhere.

S3. LINEAR DIFFERENTIAL APPROXIMATION

We wish to consider the problem of approximating to

a given function f(t) by means of an exponential

polynomial of the type appearing in (2.3), for reasons

* we shall describe below. Since a direct approach to

this Problem, posse-ses s .M.....4,a.nowa pitfPall.s (see Landzos

(51), we shall pursue a different path.

First of all, we shall suppose that the given

function f(t) satisfies an ordinary differential

equation

(3.1) f(m) (m- )

since this is quite often the case in applications.

Secondly, we shall determine an approximating

linear differential equation with constant coefficients

(3.2) f(N) + af(-l) + a.. +aNf=o,

by asking that the coefficients ai be chosen so as to

minimize the .functional

(3.3) j (f(i) + ("l) + .,. + •ldto
0

where f is determined by (3.1)'.

k
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The approximation to f will then be the solution

of the linear differential equation

(3.4) u(N) + alu(N-1) + ... + a~u 0,

with initial conditions which will be determined in a

fashlon, dia-sed A061w'

4.. COMPUTATIONAL ASPECTS

The minimization of the expression in (3.3) leads

to theo.,yev- of Ns4a-y-,ste"mous. :Lnea, _.t

N (T
S(4.1) Z ai f' - 0, J 1

I-I 0

For moderate values of N, i.e., N • 20, the computa-

tional solution provides no difficulty once we have

evaluate•d the inceg-ap-rincc a, coeff^n4-4 ,-* We

could, if we so desired, integrate by parts and reduce the

evaluation of these integrals to the evaluation of the

integrals fT (f(i))2dt. For moderate size N, however,
0

it is more convenient to proceed directly as follows.

Introduce new variables uij, i,J - 0,1,...,N - 1,

defined by the equations

(4.2) du f(N4)f(3) (0- ) ,

and solve these equations, simultaneously with the

original equation for f, namely,



e,~ f(N) g( f(-v t
(4-3) t))

5. SOLUTION OF APPROXIMATE LINEAR EQUATION

Having determined the coefficients a. by means of

the foregoing procedures, we now wish to determine the

func tion, i as a, so!-utia- 'Jf 4 -A -first.

* approach is to use the initial values

(5.1) u(i)(o) f(i)( 0 ), J- o,1,2, ... ,N - 1,

and indeed this is what we do below with some success.
I- •n general, however, we would proceed in the

following fashion. Let ul,u2 ,...,uN be the N

principal solutions of (3.4), the solutions determined

by the condition that the matrix whose columns are

(ul(O),u.(O), .. ,ujN-1)(o)) etc., is the identity matrix.

Every solution can then be written In the form

N
(5.2 ) u(t) -Z--c- .ui-

i=l

where the ci are scalars. Let us choose these a.

so as to minimize the expression

(5-3) 7, a ci u i dt.
0i=l Xi

0

The equations for the ci are

pT N pT
(5.4) J id - X 1 cJ uiu dt- 0, 1 1 ,2,...,N.ý

O 0
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To detenmine the various integrals, we introduce the

variables vi and W j by means of the relations

dvi
S(5,.5) • - fui, vi(o) - O,

dw
. uiuji wij(o)

ad•oi the equations for the ui (Eq. (3.4) with

appropriate boundary conditions) and the equation for

f, and Integrate.

6. AN •XAMviPLE

Let us now discuss the equation of renewal type

given in (1.1). Taking 0 < t • 1, we obtain as a

third-order differential approximation to the function
•.2

(6.1) P) + 2.740299u(2) + 7.951152u(P)

+ 5.7636455u = 0.

_t 2

Using the initial values obtained from e , namely

(6..2),N; %A u)1 1, u,(0) 0 0, u"(0) -2,

we found such excellent agreement with the values of

Se over 0 <,t < I that there was no need to follow

the procedure of Sec. 5.
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Consider the expression
SJ t

(6.3) w(t) - k(t - s)u(s)ds.
"0

Differentiating repeatedly, and adding with the

coefficients obtained above, we have

(6.4) w(3) + 2.740299w(2) + 7.9511452w(l) + 5.7636 4 55w

-k(O)u"(t) + k'(O)u'(t) + k"(O)u(t)

+ 2.740299[k(O)u'(t) + k' (O)u(t)]

+ 7.95311452 k(O)u(t)
pt -

+ j u(s)(k'''(t - s) + 2.7k0299k'"(t- s)

0

+ 7.9511452k' (t - s) + 5.7636455k(t - s)]ds.

Taking k(t) =e and assuming that the term under

the integral sign is negligible, we obtain a third order

linear differential equation for w = u - f.

Let us take f = 1 - ft e-s5 ds so that the equation
0

(65 _•t t 1efS-8ds +j t _(t_s)2 u(s)ds(6.5) u-(t) - i tj ft ~ usd

0 0

has the solution u(t) = 1.

The function f(t) as given above satisfies the

linear differential equation

(6.6) f(3) + 2tf(2) + 2 f(i-) = 0,

with f(O) - 1, f,(o) =I- , f"(o) = 0.



Solving (6,6) together with the approximate linear

equation for u obtained from (6,14), we obtain the

following values for u(t):

t u(t) u,(t) u"(t)

0.3. 0.999999

0.2 0.999999 -0. l6x1O- 3  -o.- 148x",0-2

0.3 0.999969-
o0.4 0.999937-
0.5 0.999909
0.6 0.999898 - -

0.7 0.999909 O.229xi0-3 O. L74xl0"3

0.8 0.999938 0.330x10-3  O.167xi0-3

0.9 0.999970- 0.272x10-3 -0.-235x10-2

1.0 0.999989 O.919Xi0-4 -O. 189xl0o-

As we can see, the agreement with the desired value,

7.: DISCUSSION

Consider a system of renewal-type equations, given,

say, in matrix fonm :

(7.1)L x(t) - F(t)+ K(t - s)X(s)ds.
0

Equations of this type arise naturally in the study of

multidimensional branching processes; see [5], [6].

If X(t) is a 5 x 5 matrix, we are required to

store 25 functions (i.e., the elements x Mt)

,J - 1,2,... ,5) if we proceed in theOusual fashion.



If high order accuracy were required-say, intervals of

10-3 over 0 ý t < 5-we would find that rapid-acceess

storage capacity would be exceeded.

On the other hand, if we use the foregoing tech-

nique, differential approximation of order 5 would lead

to the task of solving about 250 simultaneous

differential equations plus those required to determine

F(t). This is a simple matter for a modern computer.

Furthermore, it is clear that we could use an approx-i--

mation of order 10 without coming close to the storage

capacity.
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